An Arnoldi code for computing selected eigenvalues of sparse, real, unsymmetric matrices

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

JADAMILU: a software code for computing selected eigenvalues of large sparse symmetric matrices

A new software code for computing selected eigenvalues and associated eigenvectors of a real symmetric matrix is described. The eigenvalues are either the smallest or those closest to some specified target, which may be in the interior of the spectrum. The underlying algorithm combines the Jacobi–Davidson method with efficient multilevel incomplete LU (ILU) preconditioning. Key features are mod...

متن کامل

A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices

In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...

متن کامل

Multigrid Arnoldi for Eigenvalues

A new approach is given for computing eigenvalues and eigenvectors of large matrices. Multigrid is combined with the Arnoldi method in order to solve difficult problems. First, a two-grid method computes eigenvalues on a coarse grid and improves them on the fine grid. On the fine grid, an Arnoldi-type method is used that, unlike standard Arnoldi methods, can accept initial approximate eigenvect...

متن کامل

Partitioning Rectangular and Structurally Unsymmetric Sparse Matrices for Parallel Processing

A common operation in scientific computing is the multiplication of a sparse, rectangular, or structurally unsymmetric matrix and a vector. In many applications the matrix-transposevector product is also required. This paper addresses the efficient parallelization of these operations. We show that the problem can be expressed in terms of partitioning bipartite graphs. We then introduce several ...

متن کامل

A two-level sparse approximate inverse preconditioner for unsymmetric matrices

Sparse approximate inverse (SPAI) preconditioners are effective in accelerating iterative solutions of a large class of unsymmetric linear systems and their inherent parallelism has been widely explored. The effectiveness of SPAI relies on the assumption of the unknown true inverse admitting a sparse approximation. Furthermore, for the usual right SPAI, one must restrict the number of non-zeros...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Mathematical Software

سال: 1995

ISSN: 0098-3500,1557-7295

DOI: 10.1145/212066.212091